
Journal of Sound and <ibration (2001) 248(3), 395}411
doi:10.1006/jsvi.2000.3794, available online at http://www.idealibrary.com on
CHAOTIC ENERGY EXCHANGE THROUGH
AUTO-PARAMETRIC RESONANCE IN

CYLINDRICAL SHELLS

A. A. POPOV

School of Mechanical, Materials, Manufacturing Engineering and Management,
;niversity of Nottingham, ;niversity Park, Nottingham NG7 2RD, England.

E-mail: atanas.popov@nottingham.ac.uk

J. M. T. THOMPSON

Centre for Nonlinear Dynamics and its Applications, ;niversity College ¸ondon, Gower Street,
¸ondon=C1E 6B¹, England

AND

F. A. MCROBIE

Department of Engineering, ;niversity of Cambridge, ¹rumpington Street,
Cambridge CB2 1PZ, England

(Received 28 September 1999, and in ,nal form 1 August 2000)

Internal auto-parametric instabilities in the free non-linear vibrations of a cylindrical shell
are studied numerically, focusing on two modes (a concertina mode and a chequerboard
mode) whose non-linear interaction breaks the in}out symmetry of the linear vibration
theory. The two-mode interaction leads to preferred vibration patterns with larger de#ection
inwards than outwards, and at internal resonance, signi"cant energy transfer occurs between
the modes. This has regular and chaotic features. Here, direct numerical integration is
employed to examine chaotic motions. Using a set of 2-D PoincareH sections, each valid for
a "xed level of the Hamiltonian, H, the instability under increasing H appears, as
a supercritical period-doubling pitchfork bifurcation. Chaotic motions near a homoclinic
separatrix appear immediately after the bifurcation, giving an irregular exchange of energy.
This chaos occurs at arbitrarily low amplitude as perfect tuning is approached. The
instability manifests itself as repeating excursions around the separatrix, and a number of
practical predictions can be made. These include the magnitude of the excursion, the time
taken to reach this magnitude and the degree of chaos and unpredictability in the outcome.
The e!ect of small damping is to pull the motion away from what was the chaotic separatrix,
giving a response that resembles, for a while, the lower-energy quasi-periodic orbits of the
underlying Hamiltonian system.

( 2001 Academic Press
1. INTRODUCTION

In a previous paper [1], the analysis of the non-linear vibrations of an undamped and
undriven complete cylindrical shell was began with the aim of understanding the dynamic
interaction between two vibration modes. At low-energy levels geometric averaging gave
a clear picture of a sub-critical energy exchange at and near a 1 : 2 resonance which is
physically due to the onset of parametric instability. The perturbation method e!ectively
0022-460X/01/480395#17 $35.00/0 ( 2001 Academic Press
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discards the cubic and higher terms in the equations of motion, and shows that the
essence of the non-linear modal interaction is captured by the quadratic terms. However,
it is known that internal auto-parametric resonances can trigger modal interactions
which have both regular and chaotic features. Although it is impossible to analyze
the chaos present in the complete non-linear system using geometric averaging,
it nevertheless provides a useful framework in which to view the present numerical
studies.

In this paper, the methods of Hamiltonian dynamical systems theory are applied, in order
to address the issue of the onset of chaotic motions. Using direct numerical integration of
the 4-D Hamiltonian system, the analysis of the previous paper is followed by dropping the
cubic terms: this has the advantage of allowing direct comparisons between the analysis [1]
and the numerics.

The introduction of a 2-D PoincareH section, valid for a "xed level of the Hamiltonian, s
(numerically equal to the total energy), allows the numerical solutions to be displayed as
2-D maps. Results for the tuned and de-tuned systems are presented, the parametric
instabilities under increasing s appearing as pitchfork (#ip) bifurcations.

These PoincareH sections show clearly the chaotic motions near the separatrix that appear
immediately after the bifurcation. The existence of such chaotic motions has been rigorously
proven by results of the Kolmogorov}Arnold}Moser (KAM) theory: [2}5]. A useful
introduction to this material is contained in the comprehensive review of reference [6]. To
those familiar with the Melnikov analysis of driven dissipative oscillators with one degree of
freedom, this immediate appearance of a homoclinic tangle can be seen as the consequence
of having zero damping, the non-zero driving being identi"ed as the interaction from the
extra degree of freedom. These chaotic motions, which arise at arbitrarily low amplitude as
perfect tuning is approached, give rise to an irregular exchange of energy between the
modes.

The practical implications of the present "ndings are assessed in relation to the maximum
observed excursion and the time it takes to reach it. In conclusion, a brief look at the e!ect
of light damping is undertaken.

2. THE SHELL MODEL AND HAMILTONIAN DYNAMICS

In reference [1], by starting with the non-linear von KaH rmaH n}Donnell equations for
a cylindrical shell of radius R and wall thickness h, a two-mode Rayleigh}Ritz discretization
is made by employing the approximation function for the normal displacement (positive
inwards)
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where x and y are the axial and circumferential length co-ordinates, t is the time, and ¸ is
a meridional length that is a free parameter. The "rst term is for the chequerboard mode
with 2n panels circumferentially and 2 panels axially in a wavelength 2¸, while the second
term is for the concertina mode with axial wavelength ¸. As a result, the Hamiltonian of the
two-degree-of-freedom model is given in terms of generalized displacements and conjugate
momenta by

H"1
2

p2
1
/m

1
#1

2
p2
2
/m

2
#1

2
m

1
u2

1
q2
1
#1

2
m

2
u2

2
q2
2
#H

1
(q

1
, q

2
), (2)



CHAOTIC ENERGY EXCHANGE 397
where u
1

and u
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are the natural frequencies of the chequerboard and concertina modes
respectively. The function H
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with coe$cients k
112

, k
1111

and k
1122

depending on the sti!ness and geometric properties
of the shell.

Geometric averaging readily provided a useful description of the modal interaction [1]
and revealed that the dynamics near resonance can adequately be studied by neglecting the
quartic terms in the Hamiltonian (3). Hamilton's equations of motion can be easily derived,
and after re-scaling and neglecting the higher order terms, the dynamics is now studied on
the system of ODEs
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The prime denotes di!erentiation with respect to a non-dimensional time variable q"u
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The generalized masses are also related through m
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[1]. System (4) describes

the time evolution of a two-degree-of-freedom Hamiltonian system in a 4-D phase
space.

The Hamiltonian H is constant on any solution curve, and each 3-D manifold
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is invariant under the #ow of equation (4). Since for a given energy level s the #ow is 3-D
it is possible [3, 4, 7] to construct a 2-D (local) cross-section and an associated PoincareH
map.

Very few two-degree-of-freedom systems are completely integrable, in the sense that
there are two independent functions (H is one of them) which remain invariant under
the #ow of the Hamiltonian equations [8]. PoincareH and Birkho! realized that the
classical Hamilton}Jacobi theory, which seeks such integrals, fails in most cases.
Despite this fact, the structure of the solutions of those Hamiltonian systems which
can be treated as perturbations of integrable systems is now fairly well understood.
Such systems are usually called near-integrable [4], and the KAM theorem [2, 3]
provides the whole picture of the trajectories in the phase space. By applying these
methods a qualitative geometrical picture of the underlying shell dynamics emerges
which lends itself readily to the extraction of important quantitative information [1],
without recourse to the lengthy and ad hoc algebraic manipulations required by other
approximation methods.

However, the distinctive feature of the near-integrable systems is the simultaneous
presence of regular trajectories and regions of chaotic motions; with the regular trajectories
separating the chaotic regions. According to the KAM theorem, a "nite fraction of the
phase space is "lled with trajectories which are regular, i.e., associated with integrals of the
motion. The remaining fraction exhibits chaotic behaviour. Chaotic motion always occurs
near separatrices, dividing qualitatively di!erent types of motion. One refers to the region of
chaotic motion which forms near a separatrix as a resonance layer. The picture is
additionally complicated by the fact that a chaotic trajectory lies arbitrarily close to every
point in its chaotic region. The situation resembles the approximation of any irrational
number by a rational one as closely as desired.
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3. DIRECT NUMERICAL INTEGRATION

3.1. INTEGRATION SCHEME AND POINCARED SECTION

Here a direct numerical study of the modal interaction and energy transfer is made by
using system (4). Finally, the eventual chaotic motions under the increase of the internal
energy are examined. In order to study these phenomena one computes solutions on
di!erent energy levels by suitably chosen initial conditions. All initial conditions correspond
to initial velocities and displacements at a particular energy level.

The numerical integrations are performed by Runge}Kutta methods; more exactly, one
can use DOP853 from reference [9]. This is an explicit Runge}Kutta integrator of order
8(5,3) with adaptive stepsize control and dense output of order 7. The relative tolerance
between solutions of di!erent orders in the automatic step control is kept to a value of
10~10. The higher order integrator together with the low value for the relative tolerance
secured no practical deviation of the numerical solutions from the prescribed energy level.
The Hamiltonian or the energy (5) is an invariant of third order for the investigated system.

One can reasonably argue that it is always better to use a numerical scheme well-adapted
to the Hamiltonian case than explicit Runge}Kutta numerical schemes. Moreover, there are
other invariants of Hamiltonian systems which can only be preserved by a suitable
Hamiltonian (symplectic) integrator [10, 11]. In the present case there is no practical need
to apply Hamiltonian integrators because the times of integration necessary to reveal the
discussed structure of the solutions are relatively short. The time of integration is not more
than 104 non-dimensional time units in all the presented cases. In order to be completely
sure that the numerical procedure gives correct results, integration of system (4) was also
performed with a symplectic Runge}Kutta integrator of the fourth order [10], and
compared with the solutions obtained by integrating DOP853 [9]. An excellent agreement
between the results has been observed. The reason the authors do not advocate a sympletic
integrator instead of the common numerical scheme in the present case is that the
Hamiltonian integrators are still in an early stage of development and are quite ine$cient
from the point of view of the necessary computational resources. The integration by the
sympletic Runge}Kutta method required signi"cantly more computer e!ort for practically
giving the same result as the present short-term integrations. In many cases, the
Hamiltonian (symplectic) numerical schemes will be the only acceptable choice.

The best way of representing graphically and analyzing the numerical solutions is by
using a PoincareH surface of section [4, 7, 12]. For the present autonomous system with two
degrees of freedom (4), the phase-space co-ordinates are
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An adequate PoincareH section is de"ned by the x
1
}x

2
plane, displacements and velocities of

the "rst generalized shell mode, when x
4
"0 and x

3
'0, i.e., zero velocity and positive

displacement in the second generalized shell mode.

3.2. RESULTS FOR DE-TUNED AND TUNED SYSTEMS

In order to relate the numerical results to the authors' previous analytical studies one can
use the same shell models as those described in reference [1], i.e., one tuned system with
frequency ratio m"2, and two de-tuned systems with m"1)86 and 2)18. By starting the
analysis with the de-tuned shell model having frequency ratio m"1)86, at energy level
s"0)01 the system proves to be regular. One has at the origin of the PoincareH section,
Figure 1(a), an elliptic point surrounded by closed orbits. The elliptic point at the origin of



Figure 1. PoincareH sections for m"1)86: (a) energy level s"0)01; (b) energy level s"0)05; (c) energy level
s"0)15 and (d) energy level s"0)30.
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the PoincareH plane corresponds to a closed orbit of the concertina mode q
2
, with periodic

co-ordinates x
3
(t) and x

4
(t), surrounded by a family of 2-D tori. Physically, the elliptic point

represents a periodic solution, while the tori are a family of quasi-periodic solutions. The
physical implication of the elliptic point is that if the motion starts with small initial
conditions in the chequerboard mode co-ordinates, they remain small for the whole time; in
this case the energy transfer between modes 1 and 2 is e!ectively forbidden. By further
increasing the energy to a level s"0)05 (see Figure 1(b)), the elliptic point at the origin
undergoes a pitchfork bifurcation and becomes a hyperbolic (saddle) point. In the 4-D
phase space, the hyperbolic point corresponds to a hyperbolic periodic orbit of the second
mode. The periodic solution is unstable and given a small perturbation, energy may be
transferred from mode 2 to mode 1 and backwards; the system parameters fall into the
region of the dynamic instability. For example, this condition is ful"lled [1] when the
system is started from the initial condition (q
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Below, the conditions for this instability are examined. It is interesting to note that chaotic
motions appear immediately beyond the bifurcation on the homoclinic connections to the
saddle point, Figure 1(b). This is due to the Hamiltonian structure of the solutions, i.e., the
lack of dissipation. The chaotic region is initially very thin and is localized in the vicinity of
the separatrix. Nevertheless, at higher energy levels the chaotic resonance layer begins to
occupy a signi"cant part of the phase space, see Figure 1(c) for s"0)15, and Figure 1(d) for
s"0)30.



Figure 2. PoincareH sections for m"2)18: (a) energy level s"0)01; (b) energy level s"0)10; (c) energy level
s"0)30 and (d) energy level s"0)50.

Figure 3. PoincareH sections for m+2: (a) energy level s"0)01 and (b) energy level s"0)055.
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The same qualitative changes are observed for the other de-tuned shell model with
frequency ratio m"2)18. Solution curves in PoincareH sections are shown for four di!erent
energy levels: s"0)01, Figure 2(a); s"0)10, Figure 2(b); s"0)30, Figure 2(c) and s"0)50,
Figure 2(d). They demonstrate the same sequence from a complete lack of energy transfer to
an e!ective energy exchange between modes and the eventual chaotic motions.

At the exact parametric resonance m+2, the energy transfer and the chaotic motions
start in e!ect at zero energy level (see Figure 3(a) with s"0)01 and Figure 3(b) with
s"0)055 for illustration).
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3.3. PITCHFORK (FLIP) BIFURCATION AND ITS EIGENVALUES

It is important to know the exact energy levels at which the pitchfork bifurcation occurs
because one observes there the "rst modal interaction. In reference [1] the analytical
criterion for the transition (6) was discussed. The computed energy level for the instability
for the shell with m"1)86 according to that criterion is equal to 0)03266, which is in very
close agreement with the numerical results. At energy level s"0)031, the system still has an
elliptic point at the origin of the PoincareH section which bifurcates into a hyperbolic point at
energy s"0)032, Figure 4(a). For the other shell model with m"2)18, the transition is
found numerically between energy levels s"0)053 and 0)054 (Figure 4(b)), while (6) suggests
a value equal to 0)05106, which is in fairly good agreement.

The eigenvalues of the "xed point have been computed numerically at the origin using the
PoincareH map. These determine the bifurcation type from elliptic to hyperbolic point, see
Figure 5. Here, they indicate the existence of a Hamiltonian pitchfork (#ip) bifurcation
(provided that the appropriate non-linearities are present in the system). The negative real
parts of two of the map eigenvalues show a reversible action of the #ow along two
eigenvectors. The physical manifestation of this reversibility is that the system jumps (#ips)
Figure 4. Hyperbolic point and homoclinic orbit just beyond the pitchfork bifurcation: (a) for m"1)86 at
energy level s"0)032 and (b) for m"2)18 at energy level s"0)054.

Figure 5. Schematic eigenvalues for the PoincareH map of the "xed point at the origin: (a) for the elliptic point
and (b) for the hyperbolic point after the Hamiltonian period-doubling pitchfork bifurcation.
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from positive to negative values of x
1

and vice versa in the PoincareH sections shown
previously.

4. DISCUSSION AND CONCLUSIONS

4.1. THE MECHANISM OF INSTABILITY

The auto-parametric instability can be described in terms of a ball rolling on the total
potential energy surface of Figure 3 in reference [1] and Figure 6(a). Equivalently, one can
imagine the motions of the extensible pendulum (Figure 6(a)) which to a cubic
approximation has an identical potential energy function. For the pendulum, q

2
would be

the amplitude of the bouncing mode, and q
1

the amplitude of the swinging mode, which is
why one can sensibly draw the pendulum superimposed on the contour diagram in the
manner shown. Notice that for both the shell and the extensible pendulum the saddle-points
near Dq

1
D+1)3 are an artefact of the truncation: the validity of the truncation breaks down

long before the de#ections reach such magnitudes.
If the system, shell or pendulum, is given a fundamental oscillation precisely in the

q
2

mode, this pure uncoupled motion in the plane of symmetry will naturally persist in
the absence of any disturbance. To see whether it will persist under small disturbances, one
must make a stability analysis. Numerical evaluation of the mapping eigenvalues gives
Figure 6. (a) The potential energy contours and the motion of the extensible pendulum. (b) &&Happy'' orbit.
(c) &&Glum'' orbit. (d) One homoclinic trajectory.
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results like those illustrated in Figure 5. These results con"rm what can be deduced
pictorially from the PoincareH sections of Figures 1}3, in which the pure q

2
mode appears as

the "xed point at the origin.
For the undamped and undriven system considered here, the control parameter, k,

governing the loss of stability can be taken as the initial amplitude q
2
(0) at rest, or

alternatively the total energy of the motion, s: critical values of k as a function of the tuning
parameter m, or hoop microstrain against axial wavenumber s are shown in Figure 11 in
reference [1], and one notes that these drop to zero as m approaches 2. Focusing on one of
the de-tuned shells, one sees that for k less than the critical value, k

c
, the fundamental

oscillation is stable corresponding to a centre in the PoincareH section. At k
c
, one has

a super-critical period-doubling pitchfork bifurcation, beyond which the fundamental
oscillation is unstable corresponding to a saddle in the PoincareH section.

The bifurcation at k
c
generates a supercritical periodic orbit with twice the period of the

fundamental q
2

mode, this orbit being seen in a PoincareH section as two symmetrically
disposed "xed points which are visited alternately by the period-two motion. This
bifurcating orbit is Lyapunov stable, being surrounded by closed curves in the PoincareH
section: these closed curves are themselves quasi-periodic motions on a torus in the larger
phase space.

The two "xed points of the secondary bifurcating orbits are disposed horizontally about
the origin for m(2 and vertically about the origin for m'2. Projected onto the contour
pictures, the horizontally disposed form appears as a &&happy'' orbit, while the vertically
disposed form appears as a &&glum'' orbit. These orbits are illustrated in Figure 6(b) and 6(c),
which it should be noted are drawn for nearly tuned values of m approximately 2. One
can identify the happy oscillation as the energetically favourable mode discussed in
reference [1]. Notice, though, that a Hamiltonian system has no particular tendency to seek
a motion that minimizes the potential energy: its motion is simply dictated by its starting
energy. Signi"cant interactions between happy and glum modes are analyzed [13] for the
same potential energy function in the presence of damping and forcing: they show that
lock-on to the glum mode can signi"cantly suppress the onset of large-amplitude
oscillations.

The unstable saddle at the origin is created at k
c
with a homoclinic connection which in

a PoincareH section has the form of a "gure of eight encircling the bifurcating period-two
"xed points. This connection is born as a homoclinic tangle, and the thickness of the chaotic
layer close to the separatrix increases with k.

4.2. EXPERIMENTAL MANIFESTATION OF THE INSTABILITY

With this understanding of the bifurcation, one is in a position to predict how the
instability would manifest itself in an experimental or operational situation. Suppose, for
example, that an experiment is being performed in which one can set the shell vibrating in
the fundamental q

2
mode at a given magnitude measured by k. One is interested in the

control increment, k!k
c
, and also in some measure, e, of the strength of the random

disturbances that the shell experiences in the laboratory environment.
For a positive increment and relatively small disturbance, the shell will exhibit

a repeating excursion around the separatrix, which as a time series will have the appearance
of those shown in Figures 7}10. Notice that these are drawn for the nearly tuned case of
m+2, with energy levels of s"0)075 and 0)150: the critical energy level for this nearly tuned
case s

c
equals approximately zero. On the contour diagram, the initial movement away

from the q
2

mode has the appearance of Figure 6(d). Features of the response that will be of



Figure 7. Numerical integration with seven initial conditions at rest, equally spaced on a circle with radius 10~4
in the "rst quadrant of the x

1
}x

2
plane, for s"0)075 and m+2.
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Figure 8. Numerical integration with seven initial conditions at rest, equally spaced on a circle with radius 10~2
in the "rst quadrant of the x

1
}x

2
plane, for s"0)075 and m+2.
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Figure 9. Numerical integration with seven initial conditions at rest, equally spaced on a circle with radius 10~4
in the "rst quadrant of the x

1
}x

2
plane, for s"0)150 and m+2.
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Figure 10. Numerical integration with seven initial conditions at rest, equally spaced on a circle with radius
10~2 in the "rst quadrant of the x

1
}x

2
plane, for s"0)150 and m+2.
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practical interest are the magnitude of the excursion, the time taken to reach this magnitude,
and the degree of chaos and unpredictability in the outcome.

4.3. MAGNITUDE OF THE EXCURSION

The magnitude of the excursion is the most predictable feature of the response. It is
relatively insensitive to the magnitude of the disturbance, e, and is not subject to a great deal
of chaotic variability. The normal form of the pitchfork bifurcation shows that it will scale
as the square root of the control increment, s!s

c
. This is re#ected in the greater excursion

amplitudes observed in Figures 9 and 10 (at s"0)150) compared to those of Figures 7 and
8 (at s"0)075). Reading the approximate amplitudes o! the time histories, the ratio is
roughly 0)55/0)35+1)57. This compares satisfactorily with the normal form prediction,

using the approximation s
c
"0, of J2+1)41 [1].

4.4. TIME TO THE FIRST EXCURSION

The time taken to reach the "rst maximum excursion is a highly variable quantity. Its
dominant characteristic is that it tends to in"nity as the magnitude of the disturbance, e,
tends to zero. This can be seen most clearly by comparing the time series of Figures 7 and 8.
The series of Figure 7 were obtained from seven initial conditions on a circular arc of radius
10~4 around the origin, while those of Figure 8 were obtained from starts on an arc of
radius 10~2. It is also subject to chaotic variability within the stochastic layer, as can be seen
most clearly in Figure 9.

4.5. DEGREE OF CHAOS IN THE RESPONSE

Chaos in the response manifests itself most signi"cantly as the variation in the time delay
between successive excursions from a single start. Remembering the form and development
of the stochastic layer, it will be observed most strongly at a high control increment (where
there is a thick stochastic layer) with a small disturbance magnitude (so that the start lies
well within the layer). These conditions are represented by Figure 9, where the irregular time
delays are clearly seen. Pursuing this line of reasoning, one can illustrate the overall
situation in Table 1.

It is interesting to note that the chaos being described here occurs at arbitrarily low
amplitudes of oscillation as the system is tuned to resonance, with m tending to 2. This runs
counter to the general idea in dissipative systems that chaos is a consequence of large
amplitude or severe non-linearity.
TABLE 1

Degree of chaos in the response

Poor control of energy
increment (k!k

c
is large)

Good control of energy
increment (k!k

c
is small)

Poor control of disturbances
(e is large)

? Regular

Good control of disturbances
(e is small)

Chaos ?



Figure 11. Numerical integration with seven di!erent equally spaced damping coe$cients d from 0 to 0)024 in
equation (7) for a "xed start at rest and s"0)150.
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4.6. EXPERIMENTAL RESULTS IN THE PRESENCE OF DAMPING

The authors have focused in this paper on the behaviour of the undamped and
undriven Hamiltonian system because it underlies and governs the behaviour of the real
damped and driven systems that are of engineering concern. Driving is well beyond the
scope of the present investigation, but it is instructive to have a brief look at the e!ect of
damping alone.

Experimentally minded researchers who have played with an undriven extensible
pendulum will know that the energy-exchange phenomena being studied here are
easily observed in the laboratory. Making the pendulum with a length of string plus a
length of spring, it can easily be tuned so that the bounce frequency is approximately
twice the swing frequency. Starting the tuned pendulum with su$cient energy in
the bouncing mode, several energy exchanges can be observed between bouncing
and swinging before all energy is e!ectively dissipated and the pendulum comes to rest
in the stationary hanging equilibrium state, which is its only available stable steady state
solution.

Slowly turning on a little viscous damping in the present numerical simulations of
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gives the set of time histories shown in Figure 11. One sees that the e!ect of a little damping
is to pull the motion away from what was the separatrix, giving a response that resembles
for a while the lower-energy quasi-periodic orbits of the underlying Hamiltonian system. It
still looks super"cially as if there is a bouncing solution that is unstable: but in reality there
is now no steady state bouncing motion, and all one sees is a complex transient leading to
the globally attracting static equilibrium.

One can speculate now that it will be possible to observe experimentally a chaotic energy
exchange for su$ciently long time when the damping is low. However, this needs to be
proven by suitable experiments.
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